Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Int J Antimicrob Agents ; 62(1): 106825, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2302838

ABSTRACT

INTRODUCTION: Ventilator-associated pneumonia (VAP) caused by carbapenem-resistant Acinetobacter baumannii (CRAB) in patients hospitalized in intensive care units (ICUs) is an important and challenging complication, including in patients with coronavirus disease 2019 (COVID-19). Considering the poor lung penetration of most antibiotics, including intravenous colistin due to the poor pharmacokinetics/pharmacodynamics at the infection site, the choice of the best antibiotic regimen is still being debated. METHODS: This single-centre, observational study was conducted from March 2020 to August 2022, and included all patients hospitalized consecutively with VAP and concomitant bloodstream infection due to CRAB in the COVID-ICU. The main goal of the study was to evaluate risk factors associated with survival or death at 30 days from VAP onset. A propensity score for receiving therapy was added to the model. RESULTS: During the study period, 73 patients who developed VAP and concomitant positive blood cultures caused by CRAB were enrolled in the COVID-ICU. Of these patients, 67 (91.7%) developed septic shock, 42 (57.5%) had died at 14 days and 59 (80.8%) had died at 30 days. Overall, 54 (74%) patients were treated with a colistin-containing regimen and 19 (26%) were treated with a cefiderocol-containing regimen. Cox regression analysis showed that chronic obstructive pulmonary disease and age were independently associated with 30-day mortality. Conversely, cefiderocol-containing regimens and cefiderocol + fosfomycin in combination were independently associated with 30-day survival, as confirmed by propensity score analysis. CONCLUSIONS: This real-life study in patients with bacteraemic VAP caused by CRAB provides useful suggestions for clinicians, showing a possible benefit of cefiderocol and its association with fosfomycin.


Subject(s)
Acinetobacter baumannii , Bacteremia , COVID-19 , Fosfomycin , Pneumonia, Ventilator-Associated , Humans , Colistin/therapeutic use , Carbapenems/therapeutic use , Carbapenems/pharmacology , Pneumonia, Ventilator-Associated/drug therapy , COVID-19/complications , Anti-Bacterial Agents/therapeutic use , Anti-Bacterial Agents/pharmacology , Bacteremia/drug therapy
2.
Sci Rep ; 13(1): 6553, 2023 04 21.
Article in English | MEDLINE | ID: covidwho-2302485

ABSTRACT

Around one-third of patients diagnosed with COVID-19 develop a severe illness that requires admission to the Intensive Care Unit (ICU). In clinical practice, clinicians have learned that patients admitted to the ICU due to severe COVID-19 frequently develop ventilator-associated lower respiratory tract infections (VA-LRTI). This study aims to describe the clinical characteristics, the factors associated with VA-LRTI, and its impact on clinical outcomes in patients with severe COVID-19. This was a multicentre, observational cohort study conducted in ten countries in Latin America and Europe. We included patients with confirmed rtPCR for SARS-CoV-2 requiring ICU admission and endotracheal intubation. Only patients with a microbiological and clinical diagnosis of VA-LRTI were included. Multivariate Logistic regression analyses and Random Forest were conducted to determine the risk factors for VA-LRTI and its clinical impact in patients with severe COVID-19. In our study cohort of 3287 patients, VA-LRTI was diagnosed in 28.8% [948/3287]. The cumulative incidence of ventilator-associated pneumonia (VAP) was 18.6% [610/3287], followed by ventilator-associated tracheobronchitis (VAT) 10.3% [338/3287]. A total of 1252 bacteria species were isolated. The most frequently isolated pathogens were Pseudomonas aeruginosa (21.2% [266/1252]), followed by Klebsiella pneumoniae (19.1% [239/1252]) and Staphylococcus aureus (15.5% [194/1,252]). The factors independently associated with the development of VA-LRTI were prolonged stay under invasive mechanical ventilation, AKI during ICU stay, and the number of comorbidities. Regarding the clinical impact of VA-LRTI, patients with VAP had an increased risk of hospital mortality (OR [95% CI] of 1.81 [1.40-2.34]), while VAT was not associated with increased hospital mortality (OR [95% CI] of 1.34 [0.98-1.83]). VA-LRTI, often with difficult-to-treat bacteria, is frequent in patients admitted to the ICU due to severe COVID-19 and is associated with worse clinical outcomes, including higher mortality. Identifying risk factors for VA-LRTI might allow the early patient diagnosis to improve clinical outcomes.Trial registration: This is a prospective observational study; therefore, no health care interventions were applied to participants, and trial registration is not applicable.


Subject(s)
Bronchitis , COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Tract Infections , Humans , Prospective Studies , COVID-19/complications , SARS-CoV-2 , Respiration, Artificial/adverse effects , Respiratory Tract Infections/complications , Pneumonia, Ventilator-Associated/drug therapy , Bronchitis/drug therapy , Ventilators, Mechanical/adverse effects , Risk Factors , Intensive Care Units
3.
J Clin Invest ; 133(12)2023 06 15.
Article in English | MEDLINE | ID: covidwho-2295322

ABSTRACT

BACKGROUNDDespite guidelines promoting the prevention and aggressive treatment of ventilator-associated pneumonia (VAP), the importance of VAP as a driver of outcomes in mechanically ventilated patients, including patients with severe COVID-19, remains unclear. We aimed to determine the contribution of unsuccessful treatment of VAP to mortality for patients with severe pneumonia.METHODSWe performed a single-center, prospective cohort study of 585 mechanically ventilated patients with severe pneumonia and respiratory failure, 190 of whom had COVID-19, who underwent at least 1 bronchoalveolar lavage. A panel of intensive care unit (ICU) physicians adjudicated the pneumonia episodes and endpoints on the basis of clinical and microbiological data. Given the relatively long ICU length of stay (LOS) among patients with COVID-19, we developed a machine-learning approach called CarpeDiem, which grouped similar ICU patient-days into clinical states based on electronic health record data.RESULTSCarpeDiem revealed that the long ICU LOS among patients with COVID-19 was attributable to long stays in clinical states characterized primarily by respiratory failure. While VAP was not associated with mortality overall, the mortality rate was higher for patients with 1 episode of unsuccessfully treated VAP compared with those with successfully treated VAP (76.4% versus 17.6%, P < 0.001). For all patients, including those with COVID-19, CarpeDiem demonstrated that unresolving VAP was associated with a transitions to clinical states associated with higher mortality.CONCLUSIONSUnsuccessful treatment of VAP is associated with higher mortality. The relatively long LOS for patients with COVID-19 was primarily due to prolonged respiratory failure, placing them at higher risk of VAP.FUNDINGNational Institute of Allergy and Infectious Diseases (NIAID), NIH grant U19AI135964; National Heart, Lung, and Blood Institute (NHLBI), NIH grants R01HL147575, R01HL149883, R01HL153122, R01HL153312, R01HL154686, R01HL158139, P01HL071643, and P01HL154998; National Heart, Lung, and Blood Institute (NHLBI), NIH training grants T32HL076139 and F32HL162377; National Institute on Aging (NIA), NIH grants K99AG068544, R21AG075423, and P01AG049665; National Library of Medicine (NLM), NIH grant R01LM013337; National Center for Advancing Translational Sciences (NCATS), NIH grant U01TR003528; Veterans Affairs grant I01CX001777; Chicago Biomedical Consortium grant; Northwestern University Dixon Translational Science Award; Simpson Querrey Lung Institute for Translational Science (SQLIFTS); Canning Thoracic Institute of Northwestern Medicine.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Respiratory Insufficiency , United States , Humans , Prospective Studies , COVID-19/therapy , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/prevention & control , Bronchoalveolar Lavage
4.
Crit Care ; 26(1): 292, 2022 09 27.
Article in English | MEDLINE | ID: covidwho-2053944

ABSTRACT

BACKGROUND: Ventilator-associated pneumonia (VAP) is common in patients with severe SARS-CoV-2 pneumonia. The aim of this ancillary analysis of the coVAPid multicenter observational retrospective study is to assess the relationship between adjuvant corticosteroid use and the incidence of VAP. METHODS: Planned ancillary analysis of a multicenter retrospective European cohort in 36 ICUs. Adult patients receiving invasive mechanical ventilation for more than 48 h for SARS-CoV-2 pneumonia were consecutively included between February and May 2020. VAP diagnosis required strict definition with clinical, radiological and quantitative microbiological confirmation. We assessed the association of VAP with corticosteroid treatment using univariate and multivariate cause-specific Cox's proportional hazard models with adjustment on pre-specified confounders. RESULTS: Among the 545 included patients, 191 (35%) received corticosteroids. The proportional hazard assumption for the effect of corticosteroids on the incidence of VAP could not be accepted, indicating that this effect varied during ICU stay. We found a non-significant lower risk of VAP for corticosteroid-treated patients during the first days in the ICU and an increased risk for longer ICU stay. By modeling the effect of corticosteroids with time-dependent coefficients, the association between corticosteroids and the incidence of VAP was not significant (overall effect p = 0.082), with time-dependent hazard ratios (95% confidence interval) of 0.47 (0.17-1.31) at day 2, 0.95 (0.63-1.42) at day 7, 1.48 (1.01-2.16) at day 14 and 1.94 (1.09-3.46) at day 21. CONCLUSIONS: No significant association was found between adjuvant corticosteroid treatment and the incidence of VAP, although a time-varying effect of corticosteroids was identified along the 28-day follow-up.


Subject(s)
COVID-19 , Pneumonia, Ventilator-Associated , Adult , COVID-19/complications , COVID-19/epidemiology , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Retrospective Studies , SARS-CoV-2
5.
Crit Care ; 26(1): 176, 2022 06 13.
Article in English | MEDLINE | ID: covidwho-1951306

ABSTRACT

OBJECTIVE: To assess the impact of treatment with steroids on the incidence and outcome of ventilator-associated pneumonia (VAP) in mechanically ventilated COVID-19 patients. DESIGN: Propensity-matched retrospective cohort study from February 24 to December 31, 2020, in 4 dedicated COVID-19 Intensive Care Units (ICU) in Lombardy (Italy). PATIENTS: Adult consecutive mechanically ventilated COVID-19 patients were subdivided into two groups: (1) treated with low-dose corticosteroids (dexamethasone 6 mg/day intravenous for 10 days) (DEXA+); (2) not treated with corticosteroids (DEXA-). A propensity score matching procedure (1:1 ratio) identified patients' cohorts based on: age, weight, PEEP Level, PaO2/FiO2 ratio, non-respiratory Sequential Organ Failure Assessment (SOFA) score, Charlson Comorbidity Index (CCI), C reactive protein plasma concentration at admission, sex and admission hospital (exact matching). INTERVENTION: Dexamethasone 6 mg/day intravenous for 10 days from hospital admission. MEASUREMENTS AND MAIN RESULTS: Seven hundred and thirty-nine patients were included, and the propensity-score matching identified two groups of 158 subjects each. Eighty-nine (56%) DEXA+ versus 55 (34%) DEXA- patients developed a VAP (RR 1.61 (1.26-2.098), p = 0.0001), after similar time from hospitalization, ICU admission and intubation. DEXA+ patients had higher crude VAP incidence rate (49.58 (49.26-49.91) vs. 31.65 (31.38-31.91)VAP*1000/pd), (IRR 1.57 (1.55-1.58), p < 0.0001) and risk for VAP (HR 1.81 (1.31-2.50), p = 0.0003), with longer ICU LOS and invasive mechanical ventilation but similar mortality (RR 1.17 (0.85-1.63), p = 0.3332). VAPs were similarly due to G+ bacteria (mostly Staphylococcus aureus) and G- bacteria (mostly Enterobacterales). Forty-one (28%) VAPs were due to multi-drug resistant bacteria. VAP was associated with almost doubled ICU and hospital LOS and invasive mechanical ventilation, and increased mortality (RR 1.64 [1.02-2.65], p = 0.040) with no differences among patients' groups. CONCLUSIONS: Critically ill COVID-19 patients are at high risk for VAP, frequently caused by multidrug-resistant bacteria, and the risk is increased by corticosteroid treatment. TRIAL REGISTRATION: NCT04388670, retrospectively registered May 14, 2020.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Pneumonia, Ventilator-Associated , Adult , COVID-19/epidemiology , Cohort Studies , Dexamethasone/therapeutic use , Humans , Incidence , Intensive Care Units , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/epidemiology , Pneumonia, Ventilator-Associated/etiology , Respiration, Artificial/adverse effects , Retrospective Studies
8.
Int J Antimicrob Agents ; 59(1): 106471, 2022 Jan.
Article in English | MEDLINE | ID: covidwho-1487080

ABSTRACT

The role of probiotics in the prevention of ventilator-associated pneumonia (VAP) remains inconclusive. The aim of this study was to assess the efficacy of a probiotic regimen for VAP prophylaxis in mechanically ventilated multi-trauma patients, intubated immediately after the injurious insult. In a randomized, placebo-controlled study enrolling multi-trauma patients, patients expected to require mechanical ventilation for >10 days were assigned at random to receive prophylaxis with a probiotic formula (n=59) or placebo (n=53). The probiotic formula was a preparation of Lactobacillus acidophilus LA-5 [1.75 × 109 colony-forming units (cfu)], Lactobacillus plantarum (0.5 × 109 cfu), Bifidobacterium lactis BB-12 (1.75 × 109 cfu) and Saccharomyces boulardii (1.5 × 109 cfu) in sachets. Each patient received two sachets twice daily for 15 days: one through the nasogastric tube and one spread on the oropharynx. The incidence of VAP was the primary endpoint. The incidence of other infections and sepsis, and the duration of hospital stay were the secondary endpoints. Administration of probiotics reduced the incidence of VAP [11.9% vs 28.3%, hazard ratio (HR) 0.34, 95% confidence interval (CI) 0.13-0.92; P=0.034] and sepsis [6.8% vs 24.5%, odds ratio 0.22, 95% CI 0.07-0.74: P=0.016]. Furthermore, probiotic prophylaxis reduced the time of stay in the intensive care unit (ICU) and the length of hospital stay. The prophylactic use of probiotics with a combination of enteral and topical application to the oropharynx had a positive effect on the incidence of VAP and sepsis, as well as on ICU and total hospital stay in patients receiving protracted mechanical ventilation.


Subject(s)
Antibiotic Prophylaxis , Bifidobacterium animalis/chemistry , Lactobacillus acidophilus/chemistry , Lactobacillus plantarum/chemistry , Pneumonia, Ventilator-Associated/drug therapy , Probiotics/therapeutic use , Saccharomyces boulardii/chemistry , Adult , Female , Greece , Humans , Male , Middle Aged
10.
Diagn Microbiol Infect Dis ; 101(2): 115344, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1303485

ABSTRACT

Ventilator associated pneumonia(VAP) is a severe complication that can lead to high mortality when not early identified or when therapy is delayed. The aim of this study was to evaluate procalcitonin(PCT) as a biomarker for VAP development. In total, 73 hospitalized patients with COVID-19 were analyzed. PCT levels greater than 0.975ng/mL were more related to VAP. No association was found for C-reactive protein (CRP). The results show that procalcitonin may be a pertinent biomarker for VAP diagnosis and can be a helpful tool for antibiotic withdrawal.


Subject(s)
Antimicrobial Stewardship/methods , COVID-19/diagnosis , Pneumonia, Ventilator-Associated/diagnosis , Procalcitonin/blood , Adult , Aged , Aged, 80 and over , Anti-Bacterial Agents/therapeutic use , Biomarkers/blood , COVID-19/complications , Female , Humans , Intensive Care Units , Male , Middle Aged , Pneumonia, Ventilator-Associated/complications , Pneumonia, Ventilator-Associated/drug therapy , ROC Curve , SARS-CoV-2 , COVID-19 Drug Treatment
11.
Crit Care ; 25(1): 197, 2021 06 07.
Article in English | MEDLINE | ID: covidwho-1261277

ABSTRACT

BACKGROUND: Hospitalized patients with COVID-19 admitted to the intensive care unit (ICU) and requiring mechanical ventilation are at risk of ventilator-associated bacterial infections secondary to SARS-CoV-2 infection. Our study aimed to investigate clinical features of Staphylococcus aureus ventilator-associated pneumonia (SA-VAP) and, if bronchoalveolar lavage samples were available, lung bacterial community features in ICU patients with or without COVID-19. METHODS: We prospectively included hospitalized patients with COVID-19 across two medical ICUs of the Fondazione Policlinico Universitario A. Gemelli IRCCS (Rome, Italy), who developed SA-VAP between 20 March 2020 and 30 October 2020 (thereafter referred to as cases). After 1:2 matching based on the simplified acute physiology score II (SAPS II) and the sequential organ failure assessment (SOFA) score, cases were compared with SA-VAP patients without COVID-19 (controls). Clinical, microbiological, and lung microbiota data were analyzed. RESULTS: We studied two groups of patients (40 COVID-19 and 80 non-COVID-19). COVID-19 patients had a higher rate of late-onset (87.5% versus 63.8%; p = 0.01), methicillin-resistant (65.0% vs 27.5%; p < 0.01) or bacteremic (47.5% vs 6.3%; p < 0.01) infections compared with non-COVID-19 patients. No statistically significant differences between the patient groups were observed in ICU mortality (p = 0.12), clinical cure (p = 0.20) and microbiological eradication (p = 0.31). On multivariable logistic regression analysis, SAPS II and initial inappropriate antimicrobial therapy were independently associated with ICU mortality. Then, lung microbiota characterization in 10 COVID-19 and 16 non-COVID-19 patients revealed that the overall microbial community composition was significantly different between the patient groups (unweighted UniFrac distance, R2 0.15349; p < 0.01). Species diversity was lower in COVID-19 than in non COVID-19 patients (94.4 ± 44.9 vs 152.5 ± 41.8; p < 0.01). Interestingly, we found that S. aureus (log2 fold change, 29.5), Streptococcus anginosus subspecies anginosus (log2 fold change, 24.9), and Olsenella (log2 fold change, 25.7) were significantly enriched in the COVID-19 group compared to the non-COVID-19 group of SA-VAP patients. CONCLUSIONS: In our study population, COVID-19 seemed to significantly affect microbiological and clinical features of SA-VAP as well as to be associated with a peculiar lung microbiota composition.


Subject(s)
COVID-19/complications , Pneumonia, Ventilator-Associated/microbiology , Staphylococcal Infections/etiology , Staphylococcus aureus/isolation & purification , Aged , Anti-Bacterial Agents/therapeutic use , Bronchoalveolar Lavage Fluid/microbiology , COVID-19/mortality , COVID-19/therapy , Female , Hospital Mortality , Hospitalization , Humans , Intensive Care Units , Italy , Logistic Models , Lung/microbiology , Male , Middle Aged , Organ Dysfunction Scores , Pneumonia, Ventilator-Associated/drug therapy , Pneumonia, Ventilator-Associated/etiology , Prospective Studies , Respiration, Artificial , Staphylococcal Infections/drug therapy
14.
Elife ; 92020 12 17.
Article in English | MEDLINE | ID: covidwho-1011747

ABSTRACT

Here, we describe the case of a COVID-19 patient who developed recurring ventilator-associated pneumonia caused by Pseudomonas aeruginosa that acquired increasing levels of antimicrobial resistance (AMR) in response to treatment. Metagenomic analysis revealed the AMR genotype, while immunological analysis revealed massive and escalating levels of T-cell activation. These were both SARS-CoV-2 and P. aeruginosa specific, and bystander activated, which may have contributed to this patient's persistent symptoms and radiological changes.


Subject(s)
Anti-Bacterial Agents/therapeutic use , COVID-19/complications , Lymphocyte Activation , Pneumonia, Ventilator-Associated/drug therapy , Pseudomonas Infections/drug therapy , SARS-CoV-2 , T-Lymphocytes/immunology , Anti-Bacterial Agents/pharmacology , COVID-19/immunology , COVID-19/therapy , Drug Resistance, Multiple, Bacterial , Humans , Lung/microbiology , Male , Meropenem/pharmacology , Meropenem/therapeutic use , Metagenomics , Middle Aged , Piperacillin, Tazobactam Drug Combination/pharmacology , Piperacillin, Tazobactam Drug Combination/therapeutic use , Pneumonia, Ventilator-Associated/diagnostic imaging , Pneumonia, Ventilator-Associated/etiology , Pseudomonas Infections/diagnostic imaging , Pseudomonas Infections/etiology , Pseudomonas aeruginosa/isolation & purification , Recurrence , Respiration, Artificial
15.
Cell Mol Immunol ; 17(9): 1001-1003, 2020 09.
Article in English | MEDLINE | ID: covidwho-690856
SELECTION OF CITATIONS
SEARCH DETAIL